Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers

نویسندگان

  • Nur Afifah Zubair
  • Norizah Abdul Rahman
  • Hong Ngee Lim
  • Yusran Sulaiman
چکیده

Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of a Cu(II)-PVA/PA6 Composite Nanofibrous Membrane for Enzyme Immobilization

PVA/PA6 composite nanofibers were formed by electrospinning. Cu(II)-PVA/PA6 metal chelated nanofibers, prepared by the reaction between PVA/PA6 composite nanofibers and Cu2+ solution, were used as the support for catalase immobilization. The result of the experiments showed that PVA/PA6 composite nanofibers had an excellent chelation capacity for Cu2+ ions, and the structures of nanofibers wer...

متن کامل

Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables

Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display...

متن کامل

Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning

ZnS:Cu/Poly(vinyl alcohol) (PVA) composite nanofibers have been successfully prepared by electrospinning technique. The formation of ZnS: Cu/PVA nanofibers were carried out by reacting H2S with Zn(AC)2:Cu/PVA nanofibers, which were electrospun from the mixture aqueous solution of Zn(Ac)2, Cu(Ac)2 and PVA. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray-diffr...

متن کامل

Fabrication of Compound Nanofibers For Antibacterial Applications in Filtration

In the present study, fabrication and characterization of compound composite nanofibers of Polyvinyl Alcohol (PVA) with nano silver and Polyamide 6 (PA6) are demonstrated. Compound composite fibers with core-shell structure were made using co-axial electrospinning method. The shell was made up of nano silver (Ag) impregnated PVA while PA6 was the core material. These compound composite nanofibe...

متن کامل

Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries

A novel one-dimensional nanohybrid comprised of conductive graphitic carbon (GC)-coated hollow FeSe2 nanospheres decorating reduced graphene oxide (rGO) nanofiber (hollow nanosphere FeSe2@GC-rGO) was designed as an efficient anode material for sodium ion batteries and synthesized by introducing the nanoscale Kirkendall effect into the electrospinning method. The electrospun nanofibers transform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017